Where do soils come from and how do they form

Where do soils come from and how do they form

Where do soils come from and how do they form? As a help in finding the answer to this question collect and examine a number of the following or similar specimens:

How were soils made?

  • Brick
  • Stones
  • Rock Salt or Cattle Salt
  • Limestone

Brick

Take pieces of brick and rub them together. A fine powder or dust will be the result.

Stones

Rub together pieces of stone; the same result will follow, except that the dust will be finer and will be produced with greater difficulty because the stones are harder. Some stones will be found which will grind others without being much affected themselves.

Rock Salt or Cattle Salt

This is a soft rock, easily broken. Place on a slate or platter one or two pieces about the size of an egg or the size of your fist. Slowly drop water on them till it runs down and partly covers the slate, then set away till the water dries up. Fine particles of salt will be found on the slate wherever the water ran and dried. This is because the water dissolved some of the rock.

Lime Stone

This is harder. Crush two samples to a fine powder and place one in water and the other in vinegar. Water has apparently no effect on it, but small bubbles are seen to rise from the sample in vinegar. The vinegar which is a weak acid is slowly dissolving the rock. The chemists tell us water will also dissolve the limestone, but very slowly. There are large areas of soil which are the refuse from the dissolving of great masses of limestone.

Where do soils come from and how do they form

We find that the rocks about us differ in hardness: they are ground to powder when rubbed together, some are easily dissolved in water, others are dissolved by weak acids.

Geologists tell us that the whole crust of the earth was at one time made up of rocks, part of which have been broken down into coarse and fine particles which form the gravel, sand and clay of our soils. The organic matter of our soils has been added by the decay of plants and animals. Several agencies have been active in this work of breaking down the rocks and making soils of them. If we look about we can perhaps see some of this work going on now.

Work of the Sun

Examine a crockery plate or dish that has been many times in and out of a hot oven, noticing the little cracks all over its surface. Most substances expand when they are heated and contract when they are cooled. When the plate is placed in the oven the surface heats faster than the inner parts, and cools faster when taken out of the oven. The result is that there is unequal expansion and contraction in the plate and consequently tension or pulling of its parts against each other. The weaker part gives way and a crack appears. If hot water is put into a thick glass tumbler or bottle, the inner surface heats and expands faster than the outer parts and the result is tension and cracking. If cold water be poured on a warm bottle or piece of warm glass, it cracks, because there is unequal contraction. In the early part of a bright sunny afternoon feel of the surface of exposed rocks, bricks, boards, or buildings on which the sun has been shining. Examine them in the same way early the next morning. You will find that the rocks are heated by the sun just as the plate was heated when put into the oven, and when the sun goes down the rocks cool again. This causes tension in the rocks and little cracks and checks appear in them just as in the heated plate, only more slowly. This checking may also be brought about by a cool shower falling on the sun heated rocks just as the cool water cracked the warm glass. Many rocks if examined closely will be found to be composed of several materials. These materials do not expand and contract alike when heated and cooled and the tendency for them to check is greater even than that of the plate. This is the case with most rocks.

Work of Rain

Rain falling on the rocks may dissolve a part of them just as it dissolved the rock salt; or, working into the small cracks made by the sun, may wash out loosened particles; or, during cold weather it may freeze in the cracks and by its expansion chip off small pieces; or, getting into large cracks and freezing, may split the rock just as freezing water splits a water pitcher or the water pipes.

Work of Moving Water

Visit some neighboring beach or the banks of some rapid stream. See how the waves are rolling the sand and pebbles up and down the beach, grinding them together, rounding their corners and edges, throwing them up into sand beds, and carrying off the finer particles to deposit elsewhere. Now visit a quiet cove or inlet and see how the quiet water is laying down the fine particles, making a clay bed. Notice also how the water plants along the border are helping. They act as an immense strainer, collecting the suspended particles from the water, and with them and their bodies building beds of soil rich in organic matter or humus.

The sun, besides expanding and cracking the rocks by its heat, helps in another way to make soils. It warms the water that has been grinding soil on the beach or along the river banks and causes some of it to evaporate. This vapor rises, forms a cloud and floats away in the air. By and by the vapor forms into rain drops which may fall on the top of some mountain. These rain drops may wash loosened particles from the surface or crevices of exposed rocks. These drops are joined by others until, by and by, they form a little stream which carries its small burden of rock dust down the slope, now dropping some particles, now taking up others. Other little streams join this one until they form a brook which increases in size and power as it descends the mountain side. As it grows by the addition of other streams it picks up larger pieces, grinds them together, grinds at its banks and loads itself with rocks, pebbles, sand and clay. As the stream reaches the lower part of the mountain where the slope is less steep, it is checked in its course and the larger stones and pebbles are dropped while the sand and finer particles are carried on and deposited on the bottom of some broad quiet river farther down, and when the river overflows its banks, are distributed over the neighboring meadows, giving them a new coating of soil and often adding to their fertility. What a river does not leave along its course it carries out to sea to help build the sand bars and mud flats there. The rain drops have now gotten back to the beach where they take up again the work of grinding the soil.

The work of moving water can be seen in almost any road or cultivated field during or just after a rain, and particularly on the hillsides, where often the soil is loosened and carried from higher to lower parts, making barren sand and clay banks of fertile hillsides and destroying the fertility of the bottom lands below.

We have already noticed the work of freezing water in splitting small and large fragments from the rocks. Water moving over the surface of the earth in a solid form, or ice, was at an earlier period in the history of the earth one of the most powerful agencies in soil formation. Away up in Greenland and on the northern border of this continent the temperature is so low that most if not all of the moisture that falls on the earth falls as snow. This snow has piled up until it has become very deep and very heavy. The great weight has packed the bottom of this great snow bank to ice. On the mountains where the land was not level the masses of snow and ice, centuries ago, began to slide down the slopes and finally formed great rivers of solid water or moving ice.

The geologists tell us that at one time a great river of ice extended from the Arctic region as far south as central Pennsylvania and from New England to the Rocky Mountains. This vast river was very deep and very heavy and into its under surface were frozen sand, pebbles, larger stones and even great rocks. Thus it acted as a great rasp or file and did an immense amount of work grinding rocks and making soils. It ground down mountains and carried great beds of soil from one place to another. When this great ice river melted, it dropped its load of rocks and soils, and as a result we find in that region of the country great boulders and beds of sand and clay scattered over the land.

Work of the Air

The air has helped in the work of wearing down the rocks and making soils. If a piece of iron be exposed to moist air a part of the air unites with part of the iron and forms iron rust. In the same way when moist air comes in contact with some rocks part of the air unites with part of the rock and forms rock rust which crumbles off or is washed away by water. Thus the air helps to break down the rocks. Moving air or wind picks up dust particles and carries them from one field to another. On sandy beaches the wind often blows the sand along like snow and piles it into drifts. The entire surface of sandy regions is sometimes changed in this way. Sands blown from deserts sometimes bury forests which with their foliage sift the fatal winding sheet from the dust-laden winds.

The Work of Plants

Living plants sometimes send their roots into rock crevices; there they grow, expand, and split off rock fragments. Certain kinds of plants live on the surface of rocks. They feed on the rocks and when they die and decay they keep the surface of the rocks moist and also produce carbonic acid which dissolves the rocks slowly just as the vinegar dissolved the limestone in our experiment.

Dead decaying roots, stems, and leaves of plants form largely the organic matter of the soil. When organic matter has undergone a certain amount of decay it is called humus, and these soils are called organic soils or humus soils. The black soils of the woods, swamps and prairies, contain large amounts of humus.

Work of Animals

Earth worms and the larva of insects which burrow in the soil eat soil particles which pass through their bodies and are partially dissolved. These particles are generally cast out on the surface of the soil. Thus these little animals help to move soil, to dissolve soil, and to open up passages for the entrance of air and rain.

Tags: Where do soils come from and how do they form, where do limestone come from, where do brick come from, where to salt come from, rock salt, cattle salt, how do stones form

YouTube Channel: Farming South Africa
Facebook Page: Farming Life
Back To Home Page: Farming South Africa

Leave a Reply

Your email address will not be published. Required fields are marked *